
Coherent Logic — an overview

Marc Bezem
Department of Informatics

University of Bergen
(github.com/marcbezem/CL-PC22)

September 2022

Crash course in Coherent Logic (CL)
Basics
Proof theory for CL
Metatheory
Translation from FOL to CL
Evaluation of CL as a fragment of FOL

Automated reasoning in CL
Automated reasoning
Elimination of function symbols
Proof search strategies

Applications of CL
Proof assistants
Model finding
Constructive algebra

Coherent logic preliminaries 1

▶ Fix a finite first-order signature Σ

▶ Positive formulas: built up from atoms using ⊤,⊥,∨,∧,∃
▶ Coherent implications (sentences): ∀⃗x. (C → D) with C,D

positive formulas
▶ Coherent theory: axiomatized by coherent sentences
▶ ∨∃∧-formula: (∃⃗y1.A1) ∨ · · · ∨ (∃⃗yk.Ak), k ≥ 0, with each Ai a

(possibly empty) conjunction of atoms
▶ Lemma 1. Every positive formula is (constructively)

equivalent to a ∨∃∧-formula. Proof by induction:
▶ Base cases: atom (one disjunct, empty ∃, one conjunct);

⊥ (empty ∨); ⊤ (one disjunct with empty ∃,∧)
▶ Induction cases: ∨ (trivial); ∧ (distributivity + (∃x.φ) ∧ (∃y.ψ)

iff ∃xy. (φ ∧ ψ)); ∃ (commutes with ∨)

Coherent logic preliminaries 2

▶ Lemma 2. Every coherent implication is (constructively)
equivalent to a finite set of coherent implications
∀⃗x. (C → D) with C a conjunction of atoms and D a
∨∃∧-formula

▶ Proof. Use Lemma 1 to replace C and D by ∨∃∧-formulas.
Then use (φ ∨ ψ) → D iff (φ→ D) ∧ (ψ → D), and
(∃y.φ) → D iff ∀y. (φ→ D)

▶ Notation: we use the format of Lemma 2, leaving out the
universal prefix, and omitting the premiss ‘C → ’ if C ≡ ⊤

▶ Discuss: ∃y.⊤ and ∃y.⊥ and ∀y.⊤ and ∀y.⊥
▶ Full compliance with Tarski semantics if Σ has a constant

Examples

▶ all usual equality axioms, including congruence
▶ p ∨ np and p ∧ np → ⊥ (NB p ∨ ¬p is not coherent)
▶ lattice theory: ∃z. meet(x, y, z)
▶ geometry: p(x) ∧ p(y) → ∃z. ℓ(z) ∧ i(x, z) ∧ i(y, z)
▶ rewriting, ⋄-property: r(x, y) ∧ r(x, z) → ∃u. r(y, u) ∧ r(z, u)
▶ weak-tc-elim: r∗(x, y) → (x = y) ∨ ∃z. r(x, z) ∧ r∗(z, y)
▶ seriality: ∃y. s(x, y) (who needs a function?)
▶ field theory: (x = 0) ∨ ∃y. (x · y = 1)
▶ local ring: ∃y. (x · y = 1) ∨ (∃y. ((1 − x) · y = 1) (equivalent

to the more common: if x + y is a unit, then x is a unit or y is
a unit).

History of CL

▶ Skolem (1920s): coherent formulations of lattice theory
and projective geometry, calling the axioms
“Erzeugungsprinzipien" (production rules), anticipating
ground forward reasoning. Using CL,
▶ Skolem solved a decision problem in lattice theory
▶ Skolem gave a method to test in/dependence from the

axioms of plane projective geometry (example: Desargues’
Axiom)

▶ Grothendieck (1960s): geometric morphisms preserve
geometric logic (= coherent logic + infinitary disjunction).
This is quite complicated, but we’ll see a glimpse in the
forcing semantics of coherent logic given later.

A proof theory for CL

▶ In short: ground forward reasoning with case distinction
and introduction of witnesses (ground tableau reasoning)

▶ In full: define inductively Γ ⊢T
y⃗ A, where A (Γ) atom (set of

atoms) with all variables in y⃗, in case
(base) A is in Γ, or in case
(step) T has an axiom ∀⃗x. (C → (∃⃗y1.B1) ∨ · · · ∨ (∃⃗yk.Bk)) such that

for some sequence of terms t⃗ with variables in y⃗ we have
▶ C[⃗t/⃗x] is a subset of Γ, and
▶ Γ,Bi [⃗t/⃗x] ⊢T

y⃗,y⃗i
A for all i = 1, . . . , n (NB y⃗i fresh wrt y⃗)

▶ Rough visualization as a tree with inner nodes like

Γ,B1 [⃗t/⃗x] · · · Γ,Bn [⃗t/⃗x]
Γ

axiom

▶ NB we omit conclusion A in all the nodes, but we should
actually keep track of the y⃗, y⃗i. Looking ahead, pairs like
(⃗y; Γ) will be the forcing conditions, ≈ finite Kripke worlds.

Derivation trees in CL, example and general procedure

▶ Let T consists of p ∨ ∃x. q(x) and p → ⊥ and q(y) → r
▶ Derivation tree for ∅ ⊢T

∅ r

(⊥)

{p}
p → ⊥

{q(c), r}
{q(c)} q(y) → r

∅ p ∨ ∃x. q(x)

▶ Tree construction: from ∅, repeat exhaustively 1,2,3 below
1. Pick a leaf node (̸= (⊥)) without A in its Γ (else done)
2. Pick fairly a Γ-false instance of an axiom of T (else fail: Γ is

a model of T not containing A, so A is underivable)
3. Extend the tree in the leaf node according to the instance

▶ Fairness is tricky to define, but crucial for the following
completeness result (to be proved on the next slide):

▶ The tree construction stops in 1 iff A is derivable (if-part!)
▶ Example for explaining un/fairness: ∃y.s(x, y) and p(0)

Soundness and completeness wrt Tarski semantics

▶ Soundness easily proved by induction on Γ ⊢T
y⃗ A

▶ Not complete: ∅ ⊢∀x.⊥
∅ p underivable without a constant in Σ

▶ Silly, let’s assume a constant in Σ, or just ∃x.⊤
▶ Proof of completeness: essentially non-constructive.

Assume ∀⃗y. (Γ → A) holds in any model of T. Build the tree
for Γ ⊢T

y⃗ A. Recall the that the sets Γ grow along the
branches. If the tree is finite, it is a proof (2 cannot
happen). If not, it has an infinite branch by König’s Lemma.
Collect the set of variables Y and the set of atoms M along
the infinite branch. Build a model with domain TmΣ(Y) and
positive diagram M. This is a model of T (by fairness)
containing Γ but not A. Contradiction.

▶ Proof theory easily extended to arbitrary coherent
conclusions of a coherent theory T.

Metatheoretic results and remarks

▶ Corollary of completeness: given a coherent theory T,
classically provable coherent sentences are constructively
provable

▶ For geometric logic this is called Barr’s Theorem
(anticipated by Lawvere and Deligne)

▶ Completeness and Barr’s Theorem are not constructive
▶ Barr’s Theorem for coherent logic can be proved

constructively using a cut-elimination argument
▶ Coherent completeness wrt forcing semantics is

constructively provable, but does not give the
conservativity of classical reasoning

▶ NB: the forcing semantics is sound wrt cosntructive logic
for arbitrary formulas

Translation from FOL to CL

▶ Idea: introduce two new predicate symbols T(ψ),F(ψ) for
each subformula ψ of a given formula φ, with the arities of
T(ψ),F(ψ) being the number of free variables of ψ. The
rules for signed tableaux are coherent axioms:

▶ if ψ(⃗x) ≡ ψ1 ∧ ψ2, then
{

T(ψ)(⃗x) → T(ψ1)(⃗x) ∧ T(ψ2)(⃗x)
F(ψ)(⃗x) → F(ψ1)(⃗x) ∨ F(ψ2)(⃗x)

▶ if ψ(⃗x) ≡ ψ1 ∨ ψ2, then ...

▶ if ψ(⃗x) ≡ ψ1 → ψ2, then
{

T(ψ)(⃗x) → F(ψ1)(⃗x) ∨ T(ψ2)(⃗x)
F(ψ)(⃗x) → T(ψ1)(⃗x) ∧ F(ψ2)(⃗x)

▶ if ψ(⃗x) ≡ ¬ψ1, then ...

▶ if ψ(⃗x) ≡ ∀y.ψ1(⃗x, y), then
{

T(ψ)(⃗x) → T(ψ1)(⃗x, y)
F(ψ)(⃗x) → ∃y.F(ψ1)(⃗x, y)

▶ if ψ(⃗x) ≡ ∃y.ψ1(⃗x, y), then
{

T(ψ)(⃗x) → ∃y.T(ψ1)(⃗x, y)
F(ψ)(⃗x) → F(ψ1)(⃗x, y)

▶ if ψ(⃗x) is atomic, then (T(ψ)(⃗x) ∧ F(ψ)(⃗x)) → ⊥
▶ By the completeness of signed tableaux: φ is a tautology iff

F(φ) ⊢Coh(φ)
∅ ⊥, with Coh(φ) all the above axioms

Example in propositional logic: Peirce’s Law

▶ Peirce’s Law: φ :≡ ((p → q) → p) → p

▶ To prove: F(((p → q) → p) → p) ⊢Coh(φ)
∅ ⊥

▶ Part of Coh(φ) that is actually used:
1. F(((p → q) → p) → p) → (T((p → q) → p) ∧ F(p))
2. T((p → q) → p) → (F(p → q) ∨ T(p))
3. F(p → q) → (T(p) ∧ F(q))
4. (T(p) ∧ F(p)) → ⊥

▶ Proof: use 1, 2, 3 and split on F(p → q) ∨ T(p), ...
▶ Details on the blackboard
▶ Proof of φ: take T :≡ λφ. φ, F :≡ λφ.¬φ. Then 1,2,3,4 are

easy (but classical), the CL proof is also a proof in
propositional logic, and we finish by RAA

Example in predicate logic: the Drinker’s Paradox

▶ Drinker’s Paradox: φ :≡ ∃x. (d(x) → ∀y.d(y))

▶ To prove: F(∃x. d(x) → ∀y.d(y))) ⊢Coh(φ)
∅ ⊥

▶ Part of Coh(φ) that is actually used:
1. no take-off without ∃x.⊤, alternative: prove F(φ) ⊢Coh(φ)

{c} ⊥
2. ∀x. (F(∃x. d(x) → ∀y.d(y))) → F(d(x) → ∀y.d(y)))
3. ∀x. (F(d(x) → ∀y.d(y)) → (T(d(x)) ∧ F(∀y.d(y))))
4. F(∀y.d(y)) → ∃y.F(d(y))
5. ∀x. (T(d(x)) ∧ F(d(x))) → ⊥

▶ Proof: use 1 and get c, instantiate 2 and 3 with c and get
T(d(c)) ∧ F(∀y.d(y)), so by 4 we get c′ with F(d(c′)), ...

▶ Details on the blackboard
▶ Proof of φ in FOL: take T :≡ λφ. φ, F :≡ λφ.¬φ. Then 1–5

are easy (Tarski and classical), the CL proof is also a proof
in FOL, and we finish by RAA

Translation from FOL to CL (ctnd)

▶ Skolem (1920): Every FOL theory has a definitional
extension that is equivalent to a ∀∃ theory

▶ Many variations possible (Polonsky, Dyckhoff & Negri,
Fisher, Mints)

▶ Possible objectives: fewer new predicates, fewer CL
axioms ..., keeping a coherent axiom coherent

▶ Polonsky proposed several improvements, starting from
NNF, flipping polarities, also using reversed tableaux rules

▶ Dyckhoff & Negri: add T(ψ)(⃗x) → ψ(⃗x) and
(F(ψ)(⃗x) ∧ ψ(⃗x)) → ⊥ for all atomic ψ and obtain: Every
FOL theory has a positive semi-definitional extension that
is equivalent to a CL theory

▶ Consequences in CL are always constructive
▶ Translation of FOL to CL contains many non-constructive

steps, often more than necessary

Evaluation of CL as a fragment of FOL

▶ Constructive, with classical logic a conservative extension
▶ Simpler metatheory: proof theory, completeness,

conservativity of skolemization (elimination of ∃)
▶ Applications to metamathematics: independence, decision

problems
▶ Other applications:

▶ automated reasoning, supporting proof assistants
▶ model finding
▶ constructive algebra

Automated reasoning (AR)

▶ We focus on AR in (fragments of) FOL
▶ There are dozens of FOL provers (Vampire wins CASC)
▶ TPTP is a large database of AR problems (CNF/FOL/HOL)
▶ Different branch of AR: model finding (SAT/CNF/FNT)
▶ There are a handful of CL provers (competitive on CL

problems, but not on FOL problems):
▶ SATCHMO+ (Bry et al.)
▶ Argo, Larus (Janicic et al.)
▶ Geo (Nivelle et al.)
▶ Colog (Fisher)
▶ EYE (De Roo, semantic web)

▶ Most CL provers support only 0-ary function symbols
▶ We describe later how to eliminate function symbols

Rationale for automated reasoning in CL

▶ Expressivity of CL is between CNF (resolution) and FOL
▶ Different balance: expressivity versus efficiency
▶ Skolemization (elimination of ∃) not necessary

▶ Skolemization makes the Herbrand Universe infinite
▶ Why skolemize an axiom like p(x, y) → ∃z. p(x, z)?
▶ Skolemization changes meaning (problematic for interactive

theorem proving, and for obtaining proof objects)
▶ Skolem functions obfuscate symmetries (cf. ⋄-property)
▶ But: skolemized proofs can be exponentially shorter!

▶ Ground forward reasoning is very simple and intuitive,
proof objects can easily be obtained

▶ But: non-ground proofs can be exponentially shorter!

Elimination of function symbols

▶ Idea: use the graph instead of the function, i.e., new
(n+1)-predicates for n-ary functions, for example:
▶ For constants: c(x) (expressing c = x), axiom ∃x. c(x)
▶ For unary functions: s(x, y) (expressing s(x) = y), axiom

∃y. s(x, y)

▶ Example: the term f (s(x), o) leads to a condition
s(x, y) ∧ o(u) ∧ f (y, u, z) after which every occurrence of
f (s(x), o) is replaced by z. Then ∀⃗x. (C → D) becomes
∀x, y, u, z, x⃗ (s(x, y) ∧ o(u) ∧ f (y, u, z) ∧ C′ → D′) where C′,D′

are the result of the substitution in C and D.
▶ Example: a = b becomes a(x) ∧ b(y) → x = y
▶ Unicity, e.g., c(x) ∧ c(y) → x = y, not required! (since the

new conditions only occur in negative positions)

Puzzle, formalized in CL with functions (Nivelle)

▶ Can one color each n ∈ N either red or blue but not both
such that, if n is red, then n+2 is blue, and if n is blue, then
n+1 is red?

▶ No: consider 0?23 . . . and 01?34 . . .
▶ CL theory:

1. r(x) ∨ g(x)
2. r(x) ∧ g(x) → ⊥
3. r(x) → g(s(s(x)))
4. g(x) → r(s(x))

▶ Do we miss something?
▶ Yes, domain non-empty:

5. ∃x. ⊤

Puzzle, function eliminated

▶ See LABresources/hdn.in
1. r(x) ∨ g(x)
2. r(x) ∧ g(x) → ⊥
3. r(x) ∧ s(x, y) ∧ s(y, z) → g(z)
4. g(x) ∧ s(x, y) → r(y)
5. ∃x. ⊤
6. ∃y. s(x, y)

▶ Solution of version of puzzle with the function:
▶ Note that the substitution principle is valid
▶ Substitute (s(x) = y) for s(x, y) in 3,4,6:

▶ Regarding 6, ∃y. s(x) = y is trivial
▶ Regarding 4, g(x) ∧ s(x) = y → r(y) is equivalent to

g(x) → r(s(x))
▶ Similarly for 3 (and, in general, for any function)

Depth-first proof search in CL

▶ Recall the tree construction on slide 8
▶ Any open leaf is fine, so we always take the leftmost
▶ What instance of which Γ-false axiom to pick?
▶ NB two trees: derivation tree and the search space

organized as a tree
▶ Depth-first search: pick always the first Γ-false axiom from

the list, and use the ‘simplest’ (‘oldest’) instance
▶ Obviously incomplete, but often OK with favourable

ordering of coherent axioms:
1. Facts first, then Horn clauses (→ goal first)
2. Disjunctive clauses (cause branching)
3. Existential axioms (cause new variables)
4. Disjunctive existential axioms (cause both, the worst)

▶ Example: ∃y. s(x, y) should never be put first!

% the diamond property is preserved under reflexive closure

name(dpe). :- dynamic e/2,r/2,re/2.

% domain elements a,b,c
dom(a). dom(b). dom(c).

_ axiom assump : (true => re(a,b),re(a,c)).
_ axiom goal_ax(X): (re(b,X),re(c,X) => goal).

% equality axioms, insofar needed
_ axiom ref_e(X) :(dom(X) => e(X,X)).
_ axiom sym_e(X,Y) :(e(X,Y) => e(Y,X)).
_ axiom congl(X,Y,Z) :(e(X,Y),re(Y,Z) => re(X,Z)).

% intro and elim axioms for re
_ axiom e_in_re(X,Y) :(e(X,Y) => re(X,Y)).
_ axiom r_in_re(X,Y) :(r(X,Y) => re(X,Y)).
_ axiom e_or_r(X,Y) :(re(X,Y) => e(X,Y);r(X,Y)).

_ axiom dp(X,Y,Z) :(r(X,Y),r(X,Z) => dom(U),r(Y,U),r(Z,U)).

Breadth-first proof search in CL

▶ Recall: Γ is the condition of the leaf node at hand
▶ Breadth-first search: collect all ‘simplest’ instances of

Γ-false axioms and use them exhaustively
▶ Breadth-first search: complete, but often infeasible
▶ With only constants, depth-first complete for forms 1 and 2
▶ Depth-first search not complete for one single existential

clause, subtle: p(a). p(b). q(b) -> goal.
p(X),p(Y) -> dom(U),p(U),q(X),r(Y).

▶ Wanted: fair application of axioms of form 3 and 4 (sl. 21)
▶ Cycling depth-first: depth-first for forms 1 and 2, plus

cycling through the (disjunctive) existential clauses, using
instances with the ‘oldest’ constants first. Complete.

Automated reasoning in CL, conclusions

▶ Good start: Newman’s Lemma (Bezem & Coquand,’03)
▶ Limited success in CASC: 50% in FOF (Geo, Nivelle’06)
▶ Readable proofs can be extracted from CL proofs
▶ Highlight: Hessenberg’s Theorem (B, Hendriks, JAR’08)
▶ Promising: using SAT techniques (Janicic et al.)
▶ A case study, if time allows: Newman’s Lemma, stating

that, for any strongly terminating relation r(x, y), if r is
locally confluent, then r is confluent. Informal proof on
blackboard, code in nl.in. Many interesting aspects.

Proof assistants

▶ In proof assistants, proof objects are required
▶ CL proofs are readable and easily convertable
▶ Provers outputting proof objects:

▶ cl.pl (B, exports proofs to Coq, also used to verify them)
▶ coherent (Isabelle tactic, Berghofer)
▶ ArgoCLP (Coq, Isar, natural language)

▶ Modern automated support of proof assistants centers
around specialized tools for decidable fragments of FOL,
using SAT Modulo Theories-techniques. Very useful is,
e.g., the tactic lia (linear arithmetic) in Coq.

coherent

Model finding

▶ Satisfiability in FOL is co-RE, so restrict to finite models
▶ Naive approach: try to find a model with 1 element, then

with 2 elements, and so on. Quantifiers ∀,∃ are written out
(‘grounding’), and the resulting (rapidly growing)
propositions are fed to a SAT-solver

▶ Many clever tricks can actually make this to work
▶ CL proof search is not finite model complete: ∃y. s(x, y)
▶ Solution (Nivelle): use (exhaustively) old constants before

you generate a new one + use lemma learning
▶ Success in CASC’07: 81% in FNT (Geo, Nivelle)

(Paradox, based on Minisat, winner with 85%)
▶ CL competitive on problems ‘too big to ground’

Constructive algebra

▶ Pioneers of applying CL/GL to constructve algebra:
Coste, Lombardi, Roy, Coquand

▶ Idea: making constructive sense of classical proofs by
exploiting that significant parts of algebra can be
formalized in CL/GL

▶ Barr’s Theorem guarantees then that classical results are
provable in CL/GL

Algebraic theories in CL/GL

▶ Ring (commutative with 1 ̸= 0): equational axioms
▶ Local ring: ∃y. (x · y = 1) ∨ ∃y. ((1 − x) · y = 1)
▶ Field: (x = 0) ∨ ∃y. (x · y = 1) (makes = decidable!)
▶ Alg. closed: ∃x. xn+1 = a0 + a1x + · · ·+ anxn (all n ∈ N), so

infinitely many coherent axioms
▶ Positive formula using an infinite disjunction:∨

n∈N 0 = xn+1, expressing that x is nilpotent

Hilbert’s Nullstellensatz

▶ Consider fields k ⊂ K with K algebraically closed. Let I be
an ideal of k[⃗x], and V(I) the set of common zeros
(Nullstellen) in K of the polynomials in I. Then: for any
p ∈ k[⃗x] such that p is zero on V(I) there exists an n such
that pn ∈ I.

▶ Example: Q ⊂ C, I = (x4 + 2x2 + 1), p = x5 − x, p2 ∈ I
▶ In its full generality, Hilbert’s Nullstellensatz is a strong

classical theorem, with lots of special cases and variations
▶ Effective Nullstellensatz: compute the n such that pn ∈ I
▶ Dynamical method in algebra: Effective Nullstellensätze,

Coste, Lombardi, Roy, 2001 (Dynamic method = CL proof)

	Outline
	Crash course in Coherent Logic (CL)
	Basics
	Proof theory for CL
	Metatheory
	Translation from FOL to CL
	Evaluation of CL as a fragment of FOL

	Automated reasoning in CL
	Automated reasoning
	Elimination of function symbols
	Proof search strategies

	Applications of CL
	Proof assistants
	Model finding
	Constructive algebra

