Coherent Logic — an overview

Marc Bezem Department of Informatics University of Bergen (github.com/marcbezem/CL-PC22)

September 2022

Crash course in Coherent Logic (CL)

Basics Proof theory for CL Metatheory Translation from FOL to CL Evaluation of CL as a fragment of FOL

Automated reasoning in CL

Automated reasoning Elimination of function symbols Proof search strategies

Applications of CL

Proof assistants Model finding Constructive algebra

Coherent logic preliminaries 1

- Fix a finite first-order signature Σ
- ▶ Positive formulas: built up from atoms using $\top, \bot, \lor, \land, \exists$
- ► Coherent implications (sentences): $\forall \vec{x}. (C \rightarrow D)$ with C, D positive formulas
- Coherent theory: axiomatized by coherent sentences
- ► $\forall \exists \land$ -formula: $(\exists \vec{y}_1.A_1) \lor \cdots \lor (\exists \vec{y}_k.A_k), k \ge 0$, with each A_i a (possibly empty) conjunction of atoms
- Lemma 1. Every positive formula is (constructively) equivalent to a ∨∃∧-formula. Proof by induction:
 - Base cases: atom (one disjunct, empty ∃, one conjunct); ⊥ (empty ∨); ⊤ (one disjunct with empty ∃, ∧)
 - Induction cases: ∨ (trivial); ∧ (distributivity + (∃x.φ) ∧ (∃y.ψ) iff ∃xy. (φ ∧ ψ)); ∃ (commutes with ∨)

Coherent logic preliminaries 2

- ► Lemma 2. Every coherent implication is (constructively) equivalent to a finite set of coherent implications $\forall \vec{x}. (C \rightarrow D)$ with *C* a conjunction of atoms and *D* a $\lor \exists \land$ -formula
- ▶ Proof. Use Lemma 1 to replace *C* and *D* by $\lor \exists \land$ -formulas. Then use $(\varphi \lor \psi) \to D$ iff $(\varphi \to D) \land (\psi \to D)$, and $(\exists y. \varphi) \to D$ iff $\forall y. (\varphi \to D)$
- Notation: we use the format of Lemma 2, leaving out the universal prefix, and omitting the premiss 'C → ' if C ≡ ⊤
- **b** Discuss: $\exists y. \top$ and $\exists y. \bot$ and $\forall y. \top$ and $\forall y. \bot$
- Full compliance with Tarski semantics if Σ has a constant

Examples

- all usual equality axioms, including congruence
- ▶ $p \lor np$ and $p \land np \to \bot$ (NB $p \lor \neg p$ is not coherent)
- ▶ lattice theory: $\exists z. meet(x, y, z)$
- geometry: $p(x) \land p(y) \rightarrow \exists z. \ \ell(z) \land i(x, z) \land i(y, z)$
- ▶ rewriting, \diamond -property: $r(x, y) \land r(x, z) \rightarrow \exists u. r(y, u) \land r(z, u)$
- ▶ weak-tc-elim: $r^*(x, y) \rightarrow (x = y) \lor \exists z. r(x, z) \land r^*(z, y)$
- ▶ seriality: $\exists y. s(x, y)$ (who needs a function?)
- ▶ field theory: $(x = 0) \lor \exists y. (x \cdot y = 1)$
- Iocal ring: ∃y. (x · y = 1) ∨ (∃y. ((1 − x) · y = 1) (equivalent to the more common: if x + y is a unit, then x is a unit or y is a unit).

History of CL

- Skolem (1920s): coherent formulations of lattice theory and projective geometry, calling the axioms "Erzeugungsprinzipien" (production rules), anticipating ground forward reasoning. Using CL,
 - Skolem solved a decision problem in lattice theory
 - Skolem gave a method to test in/dependence from the axioms of plane projective geometry (example: Desargues' Axiom)
- Grothendieck (1960s): geometric morphisms preserve geometric logic (= coherent logic + infinitary disjunction). This is quite complicated, but we'll see a glimpse in the forcing semantics of coherent logic given later.

A proof theory for CL

- In short: ground forward reasoning with case distinction and introduction of witnesses (ground tableau reasoning)
- In full: define inductively Γ ⊢^T_ȳ A, where A (Γ) atom (set of atoms) with all variables in ȳ, in case

(base) A is in Γ , or in case

- (step) *T* has an axiom $\forall \vec{x}. (C \rightarrow (\exists \vec{y}_1.B_1) \lor \cdots \lor (\exists \vec{y}_k.B_k))$ such that for some sequence of terms \vec{t} with variables in \vec{y} we have
 - $C[\vec{t}/\vec{x}]$ is a subset of Γ , and
 - $\Gamma, B_i[\vec{t}/\vec{x}] \vdash_{\vec{y},\vec{y}_i}^T A \text{ for all } i = 1, \dots, n$ (NB $\vec{y_i}$ fresh wrt \vec{y})
- Rough visualization as a tree with inner nodes like

$$\frac{\Gamma, B_1[\vec{t}/\vec{x}] \quad \cdots \quad \Gamma, B_n[\vec{t}/\vec{x}]}{\Gamma} \quad axiom$$

NB we omit conclusion A in all the nodes, but we should actually keep track of the y
, y
_i. Looking ahead, pairs like (y
; Γ) will be the forcing conditions, ≈ finite Kripke worlds.

Derivation trees in CL, example and general procedure

- ▶ Let *T* consists of $p \lor \exists x. q(x)$ and $p \to \bot$ and $q(y) \to r$
- ▶ Derivation tree for $\emptyset \vdash_{\emptyset}^{T} r$

▶ Tree construction: from Ø, repeat exhaustively 1,2,3 below

- 1. Pick a leaf node (\neq (\perp)) without *A* in its Γ (else done)
- 2. Pick fairly a Γ -false instance of an axiom of *T* (else fail: Γ is a model of *T* not containing *A*, so *A* is underivable)
- 3. Extend the tree in the leaf node according to the instance
- Fairness is tricky to define, but crucial for the following completeness result (to be proved on the next slide):
- The tree construction stops in 1 iff A is derivable (if-part!)
- Example for explaining un/fairness: $\exists y.s(x, y)$ and p(0)

Soundness and completeness wrt Tarski semantics

- Soundness easily proved by induction on $\Gamma \vdash_{\vec{v}}^T A$
- Not complete: $\emptyset \vdash_{\emptyset}^{\forall x. \perp} p$ underivable without a constant in Σ
- Silly, let's assume a constant in Σ , or just $\exists x. \top$
- ▶ Proof of completeness: essentially non-constructive. Assume $\forall \vec{y}$. $(\Gamma \rightarrow A)$ holds in any model of *T*. Build the tree for $\Gamma \vdash_{\vec{y}}^T A$. Recall the that the sets Γ grow along the branches. If the tree is finite, it is a proof (2 cannot happen). If not, it has an infinite branch by König's Lemma. Collect the set of variables *Y* and the set of atoms *M* along the infinite branch. Build a model with domain $\text{Tm}^{\Sigma}(Y)$ and positive diagram *M*. This is a model of *T* (by fairness) containing Γ but not *A*. Contradiction.
- Proof theory easily extended to arbitrary coherent conclusions of a coherent theory T.

Metatheoretic results and remarks

- Corollary of completeness: given a coherent theory *T*, classically provable coherent sentences are constructively provable
- For geometric logic this is called Barr's Theorem (anticipated by Lawvere and Deligne)
- Completeness and Barr's Theorem are not constructive
- Barr's Theorem for coherent logic can be proved constructively using a cut-elimination argument
- Coherent completeness wrt forcing semantics is constructively provable, but does not give the conservativity of classical reasoning
- NB: the forcing semantics is sound wrt cosntructive logic for arbitrary formulas

Translation from FOL to CL

Idea: introduce two new predicate symbols T(ψ), F(ψ) for each subformula ψ of a given formula φ, with the arities of T(ψ), F(ψ) being the number of free variables of ψ. The rules for signed tableaux are coherent axioms:

 $\begin{array}{l} \label{eq:product} \bullet \quad \text{if } \psi(\vec{x}) \equiv \psi_1 \wedge \psi_2, \, \text{then} \, \left\{ \begin{array}{l} T(\psi)(\vec{x}) \rightarrow T(\psi_1)(\vec{x}) \wedge T(\psi_2)(\vec{x}) \\ F(\psi)(\vec{x}) \rightarrow F(\psi_1)(\vec{x}) \vee F(\psi_2)(\vec{x}) \end{array} \right. \\ \bullet \quad \text{if } \psi(\vec{x}) \equiv \psi_1 \vee \psi_2, \, \text{then} \, \dots \\ \bullet \quad \text{if } \psi(\vec{x}) \equiv \psi_1 \rightarrow \psi_2, \, \text{then} \, \left\{ \begin{array}{l} T(\psi)(\vec{x}) \rightarrow F(\psi_1)(\vec{x}) \vee T(\psi_2)(\vec{x}) \\ F(\psi)(\vec{x}) \rightarrow T(\psi_1)(\vec{x}) \wedge F(\psi_2)(\vec{x}) \end{array} \right. \\ \bullet \quad \text{if } \psi(\vec{x}) \equiv \neg \psi_1, \, \text{then} \, \dots \\ \bullet \quad \text{if } \psi(\vec{x}) \equiv \forall y.\psi_1(\vec{x},y), \, \text{then} \, \left\{ \begin{array}{l} T(\psi)(\vec{x}) \rightarrow T(\psi_1)(\vec{x},y) \\ F(\psi)(\vec{x}) \rightarrow \exists y.F(\psi_1)(\vec{x},y) \\ F(\psi)(\vec{x}) \rightarrow \exists y.T(\psi_1)(\vec{x},y) \end{array} \right. \\ \bullet \quad \text{if } \psi(\vec{x}) \equiv \exists y.\psi_1(\vec{x},y), \, \text{then} \, \left\{ \begin{array}{l} T(\psi)(\vec{x}) \rightarrow \exists y.T(\psi_1)(\vec{x},y) \\ F(\psi)(\vec{x}) \rightarrow \exists y.T(\psi_1)(\vec{x},y) \\ F(\psi)(\vec{x}) \rightarrow F(\psi_1)(\vec{x},y) \end{array} \right. \\ \bullet \quad \text{if } \psi(\vec{x}) \text{ is atomic, then} \, (T(\psi)(\vec{x}) \wedge F(\psi)(\vec{x})) \rightarrow \bot \end{array} \right. \end{array} \right.$

By the completeness of signed tableaux: φ is a tautology iff F(φ) ⊢^{Coh(φ)}_∅ ⊥, with Coh(φ) all the above axioms

Example in propositional logic: Peirce's Law

• Peirce's Law:
$$\varphi :\equiv ((p \to q) \to p) \to p$$

► To prove:
$$F(((p \to q) \to p) \to p) \vdash_{\emptyset}^{Coh(\varphi)} \bot$$

• Part of $Coh(\varphi)$ that is actually used:

1.
$$F(((p \to q) \to p) \to p) \to (T((p \to q) \to p) \land F(p))$$

2.
$$T((p \to q) \to p) \to (F(p \to q) \lor T(p))$$

3.
$$F(p \to q) \to (T(p) \land F(q))$$

4.
$$(T(p) \land F(p)) \rightarrow \bot$$

▶ Proof: use 1, 2, 3 and split on $F(p \rightarrow q) \lor T(p), ...$

Details on the blackboard

Proof of φ: take T :≡ λφ. φ, F :≡ λφ. ¬φ. Then 1,2,3,4 are easy (but classical), the CL proof is also a proof in propositional logic, and we finish by RAA

Example in predicate logic: the Drinker's Paradox

- ▶ Drinker's Paradox: $\varphi :\equiv \exists x. (d(x) \rightarrow \forall y.d(y))$
- ▶ To prove: $F(\exists x. d(x) \rightarrow \forall y. d(y))) \vdash_{\emptyset}^{Coh(\varphi)} \bot$
- Part of $Coh(\varphi)$ that is actually used:
 - 1. no take-off without $\exists x. \top$, alternative: prove $F(\varphi) \vdash_{\{c\}}^{Coh(\varphi)} \bot$
 - 2. $\forall x. (F(\exists x. d(x) \rightarrow \forall y.d(y))) \rightarrow F(d(x) \rightarrow \forall y.d(y)))$
 - 3. $\forall x. (F(d(x) \to \forall y.d(y)) \to (T(d(x)) \land F(\forall y.d(y))))$

4.
$$F(\forall y.d(y)) \rightarrow \exists y.F(d(y))$$

5.
$$\forall x. (T(d(x)) \land F(d(x))) \rightarrow \bot$$

- ▶ Proof: use 1 and get *c*, instantiate 2 and 3 with *c* and get $T(d(c)) \land F(\forall y.d(y))$, so by 4 we get *c'* with F(d(c')), ...
- Details on the blackboard
- Proof of φ in FOL: take T :≡ λφ. φ, F :≡ λφ. ¬φ. Then 1–5 are easy (Tarski and classical), the CL proof is also a proof in FOL, and we finish by RAA

Translation from FOL to CL (ctnd)

- Skolem (1920): Every FOL theory has a definitional extension that is equivalent to a ∀∃ theory
- Many variations possible (Polonsky, Dyckhoff & Negri, Fisher, Mints)
- Possible objectives: fewer new predicates, fewer CL axioms ..., keeping a coherent axiom coherent
- Polonsky proposed several improvements, starting from NNF, flipping polarities, also using reversed tableaux rules
- Dyckhoff & Negri: add T(ψ)(x) → ψ(x) and (F(ψ)(x) ∧ ψ(x)) → ⊥ for all atomic ψ and obtain: Every FOL theory has a positive semi-definitional extension that is equivalent to a CL theory
- Consequences in CL are always constructive
- Translation of FOL to CL contains many non-constructive steps, often more than necessary

Evaluation of CL as a fragment of FOL

- Constructive, with classical logic a conservative extension
- Simpler metatheory: proof theory, completeness, conservativity of skolemization (elimination of ∃)
- Applications to metamathematics: independence, decision problems
- Other applications:
 - automated reasoning, supporting proof assistants
 - model finding
 - constructive algebra

Automated reasoning (AR)

- We focus on AR in (fragments of) FOL
- There are dozens of FOL provers (Vampire wins CASC)
- TPTP is a large database of AR problems (CNF/FOL/HOL)
- Different branch of AR: model finding (SAT/CNF/FNT)
- There are a handful of CL provers (competitive on CL problems, but not on FOL problems):
 - SATCHMO+ (Bry et al.)
 - Argo, Larus (Janicic et al.)
 - Geo (Nivelle et al.)
 - Colog (Fisher)
 - EYE (De Roo, semantic web)
- Most CL provers support only 0-ary function symbols
- We describe later how to eliminate function symbols

Rationale for automated reasoning in CL

- Expressivity of CL is between CNF (resolution) and FOL
- Different balance: expressivity versus efficiency
- Skolemization (elimination of ∃) not necessary
 - Skolemization makes the Herbrand Universe infinite
 - ▶ Why skolemize an axiom like $p(x, y) \rightarrow \exists z. p(x, z)$?
 - Skolemization changes meaning (problematic for interactive theorem proving, and for obtaining proof objects)
 - Skolem functions obfuscate symmetries (cf. <-property)</p>
 - But: skolemized proofs can be exponentially shorter!
- Ground forward reasoning is very simple and intuitive, proof objects can easily be obtained
- But: non-ground proofs can be exponentially shorter!

Elimination of function symbols

- Idea: use the graph instead of the function, i.e., new (n+1)-predicates for n-ary functions, for example:
 - For constants: c(x) (expressing c = x), axiom $\exists x. c(x)$
 - For unary functions: s(x, y) (expressing s(x) = y), axiom $\exists y. s(x, y)$
- Example: the term f(s(x), o) leads to a condition s(x, y) ∧ o(u) ∧ f(y, u, z) after which every occurrence of f(s(x), o) is replaced by z. Then ∀x. (C → D) becomes ∀x, y, u, z, x (s(x, y) ∧ o(u) ∧ f(y, u, z) ∧ C' → D') where C', D' are the result of the substitution in C and D.
- Example: a = b becomes $a(x) \land b(y) \rightarrow x = y$
- Unicity, e.g., c(x) ∧ c(y) → x = y, not required! (since the new conditions only occur in negative positions)

Puzzle, formalized in CL with functions (Nivelle)

- Can one color each n ∈ N either red or blue but not both such that, if n is red, then n+2 is blue, and if n is blue, then n+1 is red?
- No: consider 0?23 ... and 01?34 ...
- CL theory:

1.
$$r(x) \lor g(x)$$

2. $r(x) \land g(x) \rightarrow \bot$
3. $r(x) \rightarrow g(s(s(x)))$
4. $g(x) \rightarrow r(s(x))$

- Do we miss something?
- Yes, domain non-empty:

5. ∃*x*. ⊤

Puzzle, function eliminated

See LABresources/hdn.in

1.
$$r(x) \lor g(x)$$

2.
$$r(x) \land g(x) \rightarrow \bot$$

3.
$$r(x) \land s(x, y) \land s(y, z) \rightarrow g(z)$$

$$4. \quad g(x) \land s(x, y) \to r(y)$$

5.
$$\exists x$$
. |
6. $\exists y \in (x, y)$

$$\mathbf{6.} \exists y. s(x, y)$$

Solution of version of puzzle with the function:

- Note that the substitution principle is valid
- Substitute (s(x) = y) for s(x, y) in 3,4,6:
 - Regarding 6, $\exists y. s(x) = y$ is trivial
 - ▶ Regarding 4, $g(x) \land s(x) = y \rightarrow r(y)$ is equivalent to $g(x) \rightarrow r(s(x))$
 - Similarly for 3 (and, in general, for any function)

Depth-first proof search in CL

- Recall the tree construction on slide 8
- Any open leaf is fine, so we always take the leftmost
- What instance of which Γ-false axiom to pick?
- NB two trees: derivation tree and the search space organized as a tree
- Depth-first search: pick always the first Γ-false axiom from the list, and use the 'simplest' ('oldest') instance
- Obviously incomplete, but often OK with favourable ordering of coherent axioms:
 - 1. Facts first, then Horn clauses (\rightarrow goal first)
 - 2. Disjunctive clauses (cause branching)
 - 3. Existential axioms (cause new variables)
 - 4. Disjunctive existential axioms (cause both, the worst)
- Example: $\exists y. s(x, y)$ should never be put first!

% the diamond property is preserved under reflexive closure

name(dpe). :- dynamic e/2,r/2,re/2.

```
% domain elements a,b,c
dom(a). dom(b). dom(c).
```

- _ axiom assump : (true => re(a,b),re(a,c)).
- _ axiom goal_ax(X): (re(b,X),re(c,X) => goal).

% equality axioms, insofar needed _ axiom ref_e(X) :(dom(X) => e(X,X)). _ axiom sym_e(X,Y) :(e(X,Y) => e(Y,X)).

 $_$ axiom congl(X,Y,Z) : (e(X,Y),re(Y,Z) => re(X,Z)).

% intro and elim axioms for re

- _ axiom e_in_re(X,Y) :(e(X,Y) => re(X,Y)).
- $_$ axiom r_in_re(X,Y) : (r(X,Y) => re(X,Y)).
- _ axiom e_or_r(X,Y) :(re(X,Y) => e(X,Y);r(X,Y)).

 $_$ axiom dp(X,Y,Z) : (r(X,Y),r(X,Z) => dom(U),r(Y,U),r(Z,U)).

Breadth-first proof search in CL

- Recall: Γ is the condition of the leaf node at hand
- Breadth-first search: collect all 'simplest' instances of Γ-false axioms and use them exhaustively
- Breadth-first search: complete, but often infeasible
- With only constants, depth-first complete for forms 1 and 2
- Depth-first search not complete for one single existential clause, subtle: p(a). p(b). q(b) -> goal. p(X),p(Y) -> dom(U),p(U),q(X),r(Y).
- Wanted: fair application of axioms of form 3 and 4 (sl. 21)
- Cycling depth-first: depth-first for forms 1 and 2, plus cycling through the (disjunctive) existential clauses, using instances with the 'oldest' constants first. Complete.

Automated reasoning in CL, conclusions

- Good start: Newman's Lemma (Bezem & Coquand,'03)
- Limited success in CASC: 50% in FOF (Geo, Nivelle'06)
- Readable proofs can be extracted from CL proofs
- Highlight: Hessenberg's Theorem (B, Hendriks, JAR'08)
- Promising: using SAT techniques (Janicic et al.)
- A case study, if time allows: Newman's Lemma, stating that, for any strongly terminating relation r(x, y), if r is locally confluent, then r is confluent. Informal proof on blackboard, code in nl.in. Many interesting aspects.

Proof assistants

- In proof assistants, proof objects are required
- CL proofs are readable and easily convertable
- Provers outputting proof objects:
 - cl.pl (B, exports proofs to Coq, also used to verify them)
 - coherent (Isabelle tactic, Berghofer)
 - ArgoCLP (Coq, Isar, natural language)
- Modern automated support of proof assistants centers around specialized tools for decidable fragments of FOL, using SAT Modulo Theories-techniques. Very useful is, e.g., the tactic lia (linear arithmetic) in Coq.

Model finding

- Satisfiability in FOL is co-RE, so restrict to finite models
- Naive approach: try to find a model with 1 element, then with 2 elements, and so on. Quantifiers ∀, ∃ are written out ('grounding'), and the resulting (rapidly growing) propositions are fed to a SAT-solver
- Many clever tricks can actually make this to work
- ▶ CL proof search is not finite model complete: $\exists y. s(x, y)$
- Solution (Nivelle): use (exhaustively) old constants before you generate a new one + use lemma learning
- Success in CASC'07: 81% in FNT (Geo, Nivelle) (Paradox, based on Minisat, winner with 85%)
- CL competitive on problems 'too big to ground'

Constructive algebra

- Pioneers of applying CL/GL to constructve algebra: Coste, Lombardi, Roy, Coquand
- Idea: making constructive sense of classical proofs by exploiting that significant parts of algebra can be formalized in CL/GL
- Barr's Theorem guarantees then that classical results are provable in CL/GL

Algebraic theories in CL/GL

- ▶ Ring (commutative with $1 \neq 0$): equational axioms
- ► Local ring: $\exists y. (x \cdot y = 1) \lor \exists y. ((1 x) \cdot y = 1)$
- Field: $(x = 0) \lor \exists y. (x \cdot y = 1)$ (makes = decidable!)
- ▶ Alg. closed: $\exists x. x^{n+1} = a_0 + a_1x + \cdots + a_nx^n$ (all $n \in \mathbb{N}$), so infinitely many coherent axioms
- ► Positive formula using an infinite disjunction: $\bigvee_{n \in \mathbb{N}} 0 = x^{n+1}$, expressing that *x* is nilpotent

Hilbert's Nullstellensatz

- Consider fields k ⊂ K with K algebraically closed. Let I be an ideal of k[x], and V(I) the set of common zeros (Nullstellen) in K of the polynomials in I. Then: for any p ∈ k[x] such that p is zero on V(I) there exists an n such that pⁿ ∈ I.
- ▶ Example: $\mathbb{Q} \subset \mathbb{C}$, $I = (x^4 + 2x^2 + 1)$, $p = x^5 x$, $p^2 \in I$
- In its full generality, Hilbert's Nullstellensatz is a strong classical theorem, with lots of special cases and variations
- Effective Nullstellensatz: compute the *n* such that $p^n \in I$
- Dynamical method in algebra: Effective Nullstellensätze, Coste, Lombardi, Roy, 2001 (Dynamic method = CL proof)