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Categories of forcing conditions

» Fix a finite first-order signature X
» Fix a countably infinite set of variables X = {xo, x1,...}
» Let Tm(X) be the set of X-terms over X C X
» Define the category C,s having:
> Objects denoted as pairs (X;A), where X is a finite subset
of X and A is a finite set of atoms in the language defined
by ¥ and X. (This means that only variables from X may
occur in A.) Such pairs (X;A) are called conditions.
» Morphisms denoted as f : (Y;B) — (X;A), where f is a term
substitution X — Tm(Y) such that Af C B
» Composition fo g of g : (Z; C) — (Y; B) with f above is the
substitution X — Tm(Z) that is the composition fg (in
diagram order!) of the respective substitutions
> Indentity morphisms (X;A) — (X;A) are identity
substitutions X — X

» Similarly to Cy, define Cys (C,,) when in addition f(X) C Y
(and also f injective)



Categories of forcing conditions (ctnd)
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Cys, Cys, Cry are indeed categories with terminal object (;)
Conditions will be denoted as, e.g., (x,y,z;p(2),¢(f(x),z,2))
Substitutions will be denoted as, e.g., [y := x,z := g(x)]
Post-fixing substitutions in diagram order: (Af)g = A(fg)
Depending on ¥, categories Cy, Cys, C;,, are rather
different:

> [x:=0],[x:=1]:(;) = (x;) cannot be equalized

> [x:=y],[x:=2]: (y,z3) = (x;) can be equalized by

[y:=w,z:=w]: (w;) = (y,z;) in Cy, but not in Cy,

Actually, C (Cys) has all finite products (limits)
Depending on ¥, categories Cy, Cys, Crpy Will lead to
different forcing semantics (good for independence proofs!)
What does a condition mean? A finite, partial description of
potential models. Time to consider a coherent theory T ...



Coverages depending on coherent theories

» Fix a coherent theory T
» Define inductively a relation <1y between conditions and
finite sets of conditions (denoted by U, V, ...):
(base) C <r {C} for all conditions C
(step) If T has an axiom Vx. (C — (3¥,.B1) V - -- V (F3,.B,)) such
that for some sequence of terms 7 with variables in X we
have C[f/%] C A, then the following rule applies:

(X, ¥;A,Bi[f/7]) <r Uy ... (X,¥:;A,Bi[t/x]) <r U,
(X;A) <r U1§i§n Ui

» Looks familiar? Let’s take the semantic point of view.

» Example: if T ={p — (¢ r)}, then
Gp) <r {Gp,q), Gp,r)}. The models of T extending (; p)
are models extending (;p, ¢) or models extending (; p, r)

» Borderline case: if T = {p — L}, then (;p) <7 0
» When C < U (drop 7, also: U > C) we say that U covers C



Structural properties of the coverage

» The properties of <1 use (any one of) Cy, Cyg, Ciy

» Lemma 1. If (X;A) < U and (Y;B) € U,thenX C Y and
ACBandixy: (Y;B) — (X;A). Prf: easy induction on <.

> Lemma <2. If f: D — Cand C <« U, thenthereis V > D
such that, for any E € V there is an F € U such that
g : E — F with g an extension of f. Proof: induction on <.
Intuition: view D as an (extension of) the f-instance of C.
NB C;, OK!

» Lemma <3. If C < U and for every D € U we have a
Vp > D, then C <1 | Jp; V- Proof: induction on <.
Intuition: transitivity.

» Together with <0 : C < {C}, <0—-<3 provide what is
needed for the coming definition of forcing to give a sound
and complete semantics.

» Further abstraction ~ Grothendieck topology and site



Forcing relation based on coverage
Let <1 be a coverage. For any condition C = (X;A) and any
first-order formula ¢ with free variables in X, we define the
forcing relation C I- ¢ by induction on ¢ as follows:

1.
2.
3.

CIFT

Cl-LifC<0(ie.,Alx L, explain)

C I+ ¢ if ¢ is an atom and there is U > C such that ¢ € B for
all (v;B) e U (i.e., Abx ¢)

Clk o1 Ay IfC”—¢1 andCIFqﬁz

C Ik ¢V ¢, if for some U we have C < U and (D IF ¢; or
DIk ¢y)forallD e U

C Ik ¢1 — ¢, if for all D and morphisms f : D — C we have
D I+ ¢of whenever D I+ ¢,f

C I Vx.¢ if for all D = (Y; B) and morphisms f : D — C we
have D I ¢[f,x = 1] for all t € Tm(Y)

C Ik 3x.¢ if there is U > C such that, for all D € U,

D = (Y;B), D I ¢[x =] for some r € Tm(Y)



Examples

>

>

The law of the excluded middle is not forced: for
Y={p}, T=0,n0t(;)IFpV-p
Unlike Kripke semantics, there is no one-world frame.
Hence for ¥ = {p}, T =0, surprisingly, (;) IF =—p
Classical contingencies can sometimes be forced: for
Y ={P(-)}, T =0, never C I Vx.P(x), SO
) IF (Vx.P(x)) — L
Distinguishing IFys and IF: if ¥ = {Z(-),0} and
> T ={-Z(0)}, then (x;) IFys =—Z(x), and not (x;) Ik =—Z(x)
(since [x:=0]: () — (x5), ;) IFs 7Z(0) and not (;) Ik L)
> Better, add 3x.T to T and get for ¢ = Ix.—-—Z(x) that
;) IFys @ and not (;) Ik .
NB 7 + dx.T and yet it makes a difference
Distinguishing IF,, from Ik, Ik is done in [BBC, 6.4] by a
rather complicated example (with relational X2)



Special soundness: forcing the theory itself

» Fix a coherent theory T with its <t and I+

» Forall ¢ € Twe have (;) IF ¢

» Proof by example: take ¢ = Vx. (P(x) — (p V 3y.0(x,y))).
(TL;DR) Note that (; ) is final, so we have to show that
C I+ P(t) — p Vv 3y.Q(t,y) for all conditions C = (X;A) and
t € Tm(X). So, we have to show that D IF (p v 3y.Q(tf, y))
forall D = (Y;B) and f : D — C with D I- P(zf). Now, if
U > D such that every E € U contains P(tf), then we can
use the instance of ¢ with #f to cover E such that
ElFpVv3y.0(tf,y),and use <3toget D IF p Vv 3y.0(tf, y).

» By the general soundness result (next slide), not only T is
forced, but also all its intuitionistic, possibly non-coherent
consequences.



General soundness of the forcing semantics

> Fix a signature X, one of the categories Cy, Cys, Ciy, @
coverage <1 with its forcing relation by I+

» No coherent theory T is assumed here
> Let I' i, ¢ denote intuitionistic provability (explain X)

» Soundness: for all formulas I, ¢ with free variables in X, if
' i ¢, then forany C and p : X — Tm(C),

CIFTpimplies C IF ¢p

» Proof: induction on T+ ¢ (long and tedious)



Completeness for coherent formulas

v

Fix a coherent theory T with its <t and I+

Coherent completeness: for every coherent sentence ¢, if
(,)IF ¢, then T+ ¢

For the proof we need a version for open formulas

Completeness: for every coherent sentence ¢ with free
variables in X, any condition C = (Y;A) and p : X — Tm(Y),

CIF ¢p implies T,A F ¢p

Proof by induction on ¢
This proof is constructive, and doesn’t use ‘fairness’
On the other hand, there is syntax in this semantics



Redundant sentences

> Let T be a coherent theory. A sentence ¢ is called T-
redundant if all coherent sentences + such that T, ¢ -
can be proved already in T

» The combination of soundness with coherent
completeness yields that ¢ is redundant if ¢ is forced: if
T - ¢ — 1, then by soundness ¢ — v is forced. Hence if ¢
is forced, then also v is forced, and hence provable in T if
coherent.

» Example (Kock): in the theory of local rings, the following
formula is forced and hence redundant (suprise?)

“(x=0Ay=0)— (Fzaz=1)V (Jzyz=1)
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