Syntactic Forcing Models for Coherent Logic

Marc Bezem Department of Informatics University of Bergen

(based on jww U. Buchholtz and T. Coquand, 2018, arxiv.org/abs/1712.07743)

September 2022

A category of forcing conditions

Conditions as a category

Coverages

Forcing Examples

Soundness

Completeness Redundant sentences

Categories of forcing conditions

- Fix a finite first-order signature Σ
- Fix a countably infinite set of variables $X = \{x_0, x_1, ...\}$
- Let Tm(X) be the set of Σ -terms over $X \subseteq X$
- Define the category \mathbb{C}_{ts} having:
 - Objects denoted as pairs (X;A), where X is a finite subset of X and A is a finite set of atoms in the language defined by ∑ and X. (This means that only variables from X may occur in A.) Such pairs (X;A) are called *conditions*.
 - ▶ Morphisms denoted as $f : (Y; B) \to (X; A)$, where *f* is a *term* substitution $X \to Tm(Y)$ such that $Af \subseteq B$
 - Composition f ∘ g of g : (Z; C) → (Y; B) with f above is the substitution X → Tm(Z) that is the composition fg (in diagram order!) of the respective substitutions
 - Indentity morphisms (X; A) → (X; A) are identity substitutions X → X
- Similarly to C_{ts}, define C_{vs} (C_m) when in addition f(X) ⊆ Y (and also f injective)

Categories of forcing conditions (ctnd)

- ▶ $\mathbb{C}_{ts}, \mathbb{C}_{vs}, \mathbb{C}_{rn}$ are indeed categories with terminal object (;)
- ► Conditions will be denoted as, e.g., (x, y, z; p(z), q(f(x), z, z))
- Substitutions will be denoted as, e.g., [y := x, z := g(x)]
- ▶ Post-fixing substitutions in diagram order: (Af)g = A(fg)
- Depending on Σ, categories C_{ts}, C_{vs}, C_m are rather different:
 - [x := 0], [x := 1] : (;) ⇒ (x;) cannot be equalized
 [x := y], [x := z] : (y, z;) ⇒ (x;) can be equalized by [y := w, z := w] : (w;) → (y, z;) in C_{vs}, but not in C_m
- Actually, \mathbb{C}_{ts} (\mathbb{C}_{vs}) has all finite products (limits)
- Depending on ∑, categories Cts, Cvs, Cm will lead to different forcing semantics (good for independence proofs!)
- What does a condition mean? A finite, partial description of potential models. Time to consider a coherent theory T ...

Coverages depending on coherent theories

- Fix a coherent theory T
- ▶ Define inductively a relation ⊲_T between conditions and finite sets of conditions (denoted by U, V, ...):

(base) $C \lhd_T \{C\}$ for all conditions C

(step) If *T* has an axiom $\forall \vec{x}. (C \to (\exists \vec{y}_1.B_1) \lor \cdots \lor (\exists \vec{y}_n.B_n))$ such that for some sequence of terms \vec{t} with variables in *X* we have $C[\vec{t}/\vec{x}] \subseteq A$, then the following rule applies:

$$\frac{(X, \vec{y}_1; A, B_i[\vec{t}/\vec{x}]) \triangleleft_T U_1 \dots (X, \vec{y}_n; A, B_i[\vec{t}/\vec{x}]) \triangleleft_T U_n}{(X; A) \triangleleft_T \bigcup_{1 \le i \le n} U_i}$$

- Looks familiar? Let's take the semantic point of view.
- Example: if T = {p → (q ∨ r)}, then (;p) ⊲_T {(;p,q), (;p,r)}. The models of T extending (;p) are models extending (;p,q) or models extending (;p,r)

▶ Borderline case: if $T = \{p \to \bot\}$, then $(;p) \triangleleft_T \emptyset$

• When $C \triangleleft U$ (drop $_T$, also: $U \triangleright C$) we say that U covers C

Structural properties of the coverage

- ▶ The properties of \triangleleft use (any one of) $\mathbb{C}_{ts}, \mathbb{C}_{vs}, \mathbb{C}_{m}$
- ▶ Lemma $\triangleleft 1$. If $(X;A) \triangleleft U$ and $(Y;B) \in U$, then $X \subseteq Y$ and $A \subseteq B$ and $i_{X,Y} : (Y;B) \rightarrow (X;A)$. Prf: easy induction on \triangleleft .
- Lemma ⊲2. If *f* : *D* → *C* and *C* ⊲ *U*, then there is *V* ⊳ *D* such that, for any *E* ∈ *V* there is an *F* ∈ *U* such that *g* : *E* → *F* with *g* an extension of *f*. Proof: induction on ⊲. Intuition: view *D* as an (extension of) the *f*-instance of *C*. NB C_m OK!
- ▶ Lemma ⊲3. If $C \lhd U$ and for every $D \in U$ we have a $V_D \triangleright D$, then $C \lhd \bigcup_{D \in U} V_D$. Proof: induction on ⊲. Intuition: transitivity.
- ► Together with ⊲0 : C ⊲ {C}, ⊲0−⊲3 provide what is needed for the coming definition of forcing to give a sound and complete semantics.
- ► Further abstraction ~→ Grothendieck topology and site

Forcing relation based on coverage

Let \lhd be a coverage. For any condition C = (X; A) and any first-order formula ϕ with free variables in *X*, we define the forcing relation $C \Vdash \phi$ by induction on ϕ as follows:

1. *C* ⊩ ⊤

- **2**. $C \Vdash \bot$ if $C \lhd \emptyset$ (i.e., $A \vdash_X \bot$, explain)
- 3. $C \Vdash \phi$ if ϕ is an atom and there is $U \rhd C$ such that $\phi \in B$ for all $(Y; B) \in U$ (i.e., $A \vdash_X \phi$)
- 4. $C \Vdash \phi_1 \land \phi_2$ if $C \Vdash \phi_1$ and $C \Vdash \phi_2$
- 5. $C \Vdash \phi_1 \lor \phi_2$ if for some U we have $C \lhd U$ and $(D \Vdash \phi_1$ or $D \Vdash \phi_2)$ for all $D \in U$
- 6. $C \Vdash \phi_1 \to \phi_2$ if for all D and morphisms $f : D \to C$ we have $D \Vdash \phi_2 f$ whenever $D \Vdash \phi_1 f$
- 7. $C \Vdash \forall x.\phi \text{ if for all } D = (Y;B) \text{ and morphisms } f : D \to C \text{ we have } D \Vdash \phi[f, x = t] \text{ for all } t \in \text{Tm}(Y)$

8.
$$C \Vdash \exists x.\phi$$
 if there is $U \rhd C$ such that, for all $D \in U$,
 $D = (Y; B), D \Vdash \phi[x = t]$ for some $t \in \text{Tm}(Y)$

Examples

- ► The law of the excluded middle is not forced: for $\Sigma = \{p\}, T = \emptyset, \text{not} (;) \Vdash p \lor \neg p$
- ► Unlike Kripke semantics, there is no one-world frame. Hence for $\Sigma = \{p\}, T = \emptyset$, surprisingly, $(;) \Vdash \neg \neg p$
- Classical contingencies can sometimes be forced: for $\Sigma = \{P(-)\}, T = \emptyset$, never $C \Vdash \forall x.P(x)$, so $(;) \Vdash (\forall x.P(x)) \rightarrow \bot$
- Distinguishing \Vdash_{vs} and \Vdash_{ts} : if $\Sigma = \{Z(-), 0\}$ and
 - ► $T = \{\neg Z(0)\}$, then $(x;) \Vdash_{vs} \neg \neg Z(x)$, and not $(x;) \Vdash_{ts} \neg \neg Z(x)$ (since $[x := 0] : (;) \rightarrow (x;), (;) \Vdash_{ts} \neg Z(0)$ and not $(;) \Vdash_{ts} \bot$)
 - ▶ Better, add $\exists x. \top$ to *T* and get for $\phi = \exists x. \neg \neg Z(x)$ that (;) $\Vdash_{vs} \phi$ and not (;) $\Vdash_{ts} \phi$.
- ▶ NB $T \vdash \exists x. \top$ and yet it makes a difference
- Distinguishing ⊢_m from ⊢_{vs}, ⊢_{ts} is done in [BBC, 6.4] by a rather complicated example (with relational Σ)

Special soundness: forcing the theory itself

- Fix a coherent theory T with its \triangleleft and \Vdash
- For all $\phi \in T$ we have $(;) \Vdash \phi$
- ▶ Proof by example: take $\phi \equiv \forall x. (P(x) \rightarrow (p \lor \exists y.Q(x,y))).$ (TL;DR) Note that (;) is final, so we have to show that $C \Vdash P(t) \rightarrow p \lor \exists y.Q(t,y)$ for all conditions C = (X;A) and $t \in Tm(X)$. So, we have to show that $D \Vdash (p \lor \exists y.Q(tf,y))$ for all D = (Y;B) and $f : D \rightarrow C$ with $D \Vdash P(tf)$. Now, if $U \rhd D$ such that every $E \in U$ contains P(tf), then we can use the instance of ϕ with tf to cover E such that $E \Vdash p \lor \exists y.Q(tf,y)$, and use $\lhd 3$ to get $D \Vdash p \lor \exists y.Q(tf,y)$.
- By the general soundness result (next slide), not only T is forced, but also all its intuitionistic, possibly non-coherent consequences.

General soundness of the forcing semantics

- Fix a signature Σ, one of the categories C_{ts}, C_{vs}, C_{rn}, a coverage ⊲ with its forcing relation by ⊢
- No coherent theory *T* is assumed here
- Let $\Gamma \vdash_X^i \phi$ denote intuitionistic provability (explain *X*)
- Soundness: for all formulas Γ , ϕ with free variables in *X*, if $\Gamma \vdash^i_X \phi$, then for any *C* and $\rho : X \to \operatorname{Tm}(C)$,

 $C \Vdash \Gamma \rho \text{ implies } C \Vdash \phi \rho$

Proof: induction on $\Gamma \vdash_X^i \phi$ (long and tedious)

Completeness for coherent formulas

- Fix a coherent theory T with its \triangleleft and \Vdash
- ► Coherent completeness: for every coherent sentence ϕ , if $(,) \Vdash \phi$, then $T \vdash_{\emptyset}^{i} \phi$
- For the proof we need a version for open formulas
- Completeness: for every coherent sentence *φ* with free variables in *X*, any condition *C* = (*Y*;*A*) and *ρ* : *X* → Tm(*Y*),

$$C \Vdash \phi \rho$$
 implies $T, A \vdash_X^i \phi \rho$

- Proof by induction on ϕ
- This proof is constructive, and doesn't use 'fairness'
- On the other hand, there is syntax in this semantics

Redundant sentences

- Let *T* be a coherent theory. A sentence φ is called *T*redundant if all coherent sentences ψ such that *T*, φ ⊢ⁱ ψ can be proved already in *T*
- The combination of soundness with coherent completeness yields that φ is redundant if φ is forced: if *T* ⊢^{*i*} φ → ψ, then by soundness φ → ψ is forced. Hence if φ is forced, then also ψ is forced, and hence provable in *T* if coherent.
- Example (Kock): in the theory of local rings, the following formula is forced and hence redundant (suprise?)

$$\neg (x = 0 \land y = 0) \rightarrow (\exists z. xz = 1) \lor (\exists z. yz = 1)$$